If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2+6=900
We move all terms to the left:
x^2+6-(900)=0
We add all the numbers together, and all the variables
x^2-894=0
a = 1; b = 0; c = -894;
Δ = b2-4ac
Δ = 02-4·1·(-894)
Δ = 3576
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{3576}=\sqrt{4*894}=\sqrt{4}*\sqrt{894}=2\sqrt{894}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{894}}{2*1}=\frac{0-2\sqrt{894}}{2} =-\frac{2\sqrt{894}}{2} =-\sqrt{894} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{894}}{2*1}=\frac{0+2\sqrt{894}}{2} =\frac{2\sqrt{894}}{2} =\sqrt{894} $
| 9y-14=48 | | -12x-18=-15x+42 | | 8t-54=5t-15 | | 2g−6=2 | | |x=7|+57 | | 0.25+x=2/8 | | 4(3x=7)-5=12x+8 | | 19-7h=63 | | 9v=810 | | (7/3x)+(9/6x)=50/9 | | (p+3)^2=16 | | r+-48=-621 | | 0=g^2-17g+72 | | 31x=90 | | 10x+3=127 | | -6(x+4)+3x+7=8x+12 | | 4v-v=21 | | (c+4)^2=-9 | | 4(4-6b)=-15+7b | | 5(3j+2)=4j+32 | | 3^2x=7^x | | 3/4-j=1/2 | | 3x+8+55=90 | | 6y-73=2y-21 | | -7(4-x)=21 | | 6+x+4=2x3 | | X=(5y/y^2-7y)-4/2y-14)+(9/y) | | -6−2c=-4c | | -7(4-x)=2 | | s=3s-56 | | X÷(27-x)=4÷5 | | w-12=6(1 |